

Stockage

Sommaire

Chapitre A: Présentation des installations

- » A1- Situation administrative
- » A2-Localisation
- » A3- Activités
- » A4- Type de déchets
- » A5- Localisation des activités
- » A6- Schéma d'une Installation de stockage
- » A7- Schéma de fonctionnement du traitement des lixiviats
- » A8- Schéma de principe de l'installation de valorisation énergétique

Chapitre B: Bilan d'exploitation tonnages

- » B1- Bilan des tonnages depuis 2005
- » B2- Répartition par département
- » B3- Répartition par type de déchets
- » B4- Chargements refusés
- » B5- Déclenchement de radioactivité
- » B6- Activité Bois (entrée et évacuation)

Chapitre C: Bilan d'exploitation Biogaz

- » C1- Analyses sur le biogaz
- » C2- Analyses sur la torchère
- » C3- Analyses des rejets gazeux des moteurs
- » C4- Bilan de valorisation énergétique

Sommaire

- Chapitre D: Bilan bruit
 - » D1- Mesures de bruit
- Chapitre E: Bilan des eaux (ruissellement-souterraines-lixiviats)
 - » E1- Eaux de ruissellement
 - » E2- Eaux souterraines
 - » E3- Analyses des lixiviats
 - » E4- Analyses des lixiviats eaux de la bassine
 - » E5- Bilan du traitement des lixiviats
 - » E6- Emissions diffuses
- Chapitre F: Travaux et perspectives

Chapitre A

Présentation des installations

A1: Situation administrative en 2018

L'ISDND de Fouju Moisenay est réglementé par arrêté préfectoral n° 2016/DRIEE/UT77/107 du 23 novembre 2016 et l'arrêté complémentaire n°2018/DRIEE/UD77/045 du 4 juin 2018 pour le mode bioréacteur

A2: Localisation

- 1. Le site est situé dans la partie Sud-Ouest du territoire de la commune de Fouju et dans la partie Nord-Est du territoire de la commune de Moisenay, en bordure de l'autoroute A5 et de la ligne TGV Paris-Lyon.
- 2. La superficie autorisée de l'installation de stockage s'élève à environ 40,5 hectares

A3: Activités

Stockage de déchets non dangereux

Apport annuel maximal: 85 000 tonnes par an.

Installation de valorisation énergétique du biogaz

Mise en service Mars 2009.

Stockage et Broyage de bois

Mise en service en mai 2010 (récépissé de déclaration 27-10-2009). Valorisation du bois au lieu de la mise en décharge.

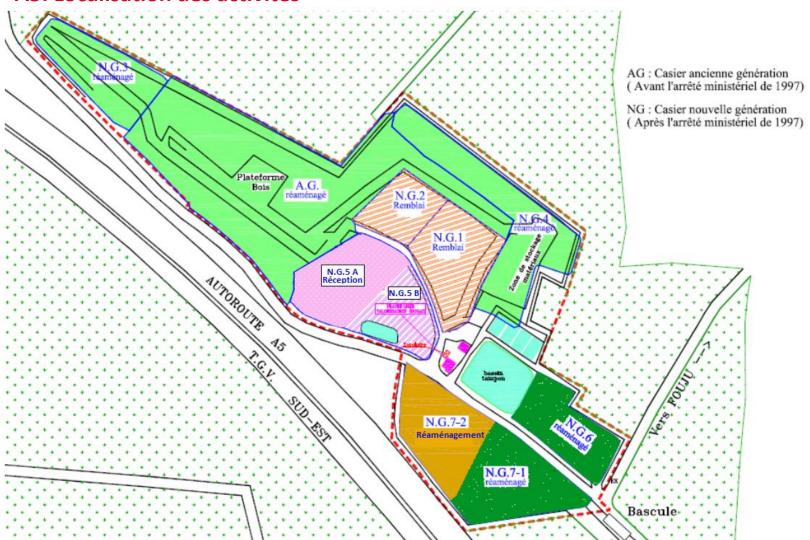
Unité de traitement des lixiviats

Traitement des lixiviats des casiers d'enfouissement par osmose inverse

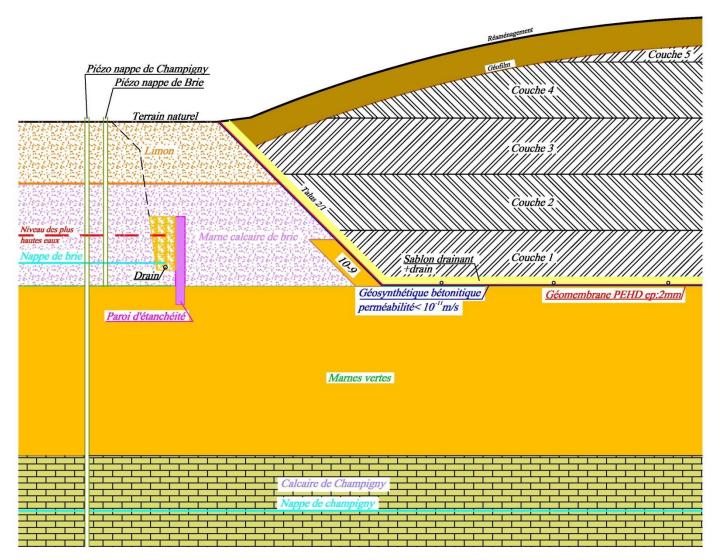
A4: Type de déchets

Déchets autorisés:

Seuls les déchets municipaux classés comme non dangereux et les déchets non dangereux de toute autre origine au sens de l'article R. 541-8 du Code de l'Environnement sont admissibles.


Exemple: Déchets classe 2, DIB, Encombrants, Déchets ultimes, RBA, refus de tri,...

Déchets interdits:

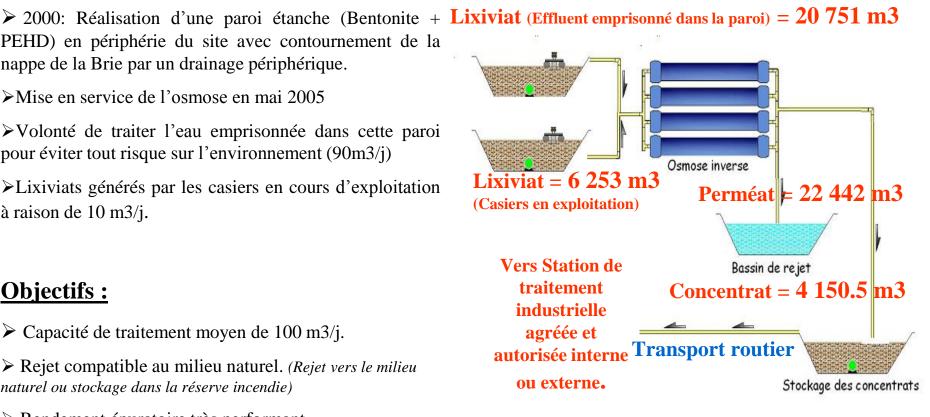

Tout déchet dangereux tel que défini par l'article R. 541-8 du Code de l'Environnement

Exemple: Amiante, plâtre, déchet liquide, explosif, comburant ou d'activité de soins...

A5: Localisation des activités

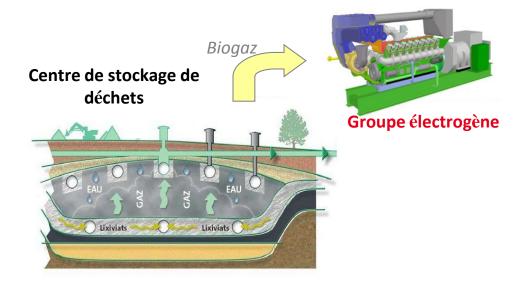
A6: Schéma d'une Installation de stockage

A7 : Schéma de fonctionnement du traitement des lixiviats


Historique:

PEHD) en périphérie du site avec contournement de la nappe de la Brie par un drainage périphérique.

- Mise en service de l'osmose en mai 2005
- ➤ Volonté de traiter l'eau emprisonnée dans cette paroi pour éviter tout risque sur l'environnement (90m3/j)
- Lixiviats générés par les casiers en cours d'exploitation à raison de 10 m3/j.


Objectifs:

- Capacité de traitement moyen de 100 m3/j.
- Rejet compatible au milieu naturel. (Rejet vers le milieu naturel ou stockage dans la réserve incendie)
- > Rendement épuratoire très performant

A8: Schéma de principe d'une installation de Valorisation énergétique

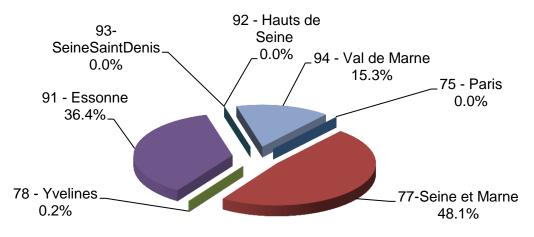
Récapitulatif installation en 2018

Puissance électrique : 2 x 834 kW

Energie annuelle : 6.26 GWh livré à EDF

Chapitre B

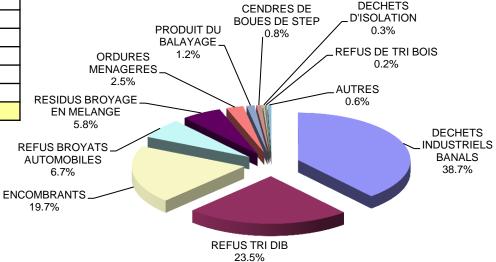
Bilan d'exploitation des tonnages


B1: Bilan des tonnages depuis 2005

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Tonnage classe 2 (t)	82 838	84 224	83 991	84 887	81 595	84 829	55 662	22 730	20 527	29 792	1 280	2 209	35 827	76 888

B2: Répartition des déchets par département

Département	Quantité (tonnes)	Part (%)
75 - Paris	3T	0.0%
77-Seine et Marne	36956T	48.1%
78 - Yvelines	135T	0.2%
91 - Essonne	27965T	36.4%
92 - Hauts de Seine	23T	0.0%
93 - Seine Saint Denis	11T	0.0%
94 - Val de Marne	11795T	15.3%
TOTAL	76888T	100.0%


Répartition géographique des déchets en 2018

B3: Répartition par type de déchets

Désignation	Quantité	Part (%)
DECHETS INDUSTRIELS BANALS	29775T	38.7%
REFUS DE TRI DIB	18102T	23.5%
ENCOMBRANTS	15149T	19.7%
REFUS BROYATS AUTOMOBILES	5182T	6.7%
RESIDUS BROYAGE EN MELANGE	4454T	5.8%
ORDURES MENAGERES	1918T	2.5%
PRODUITS DU BALAYAGE	888T	1.2%
CENDRES DE BOUES DE STEP	598T	0.8%
DECHETS D'ISOLATION	255T	0.3%
REFUS DE TRI BOIS	172T	0.2%
DECHETS DEGRILLAGE	165T	0.2%
BOUES D'EPURATION	97T	0.1%
GRAVATS EN MELANGE	73T	0.1%
DECHETS DE DESSABLAGE	23T	0.0%
REFUS DE COMPOST	21T	0.0%
DECHETS VERTS EN MELANGE	18T	0.0%
Total réceptions :	76888T	100.0%

Répartition tonnage 2018

B4: Chargements refusés

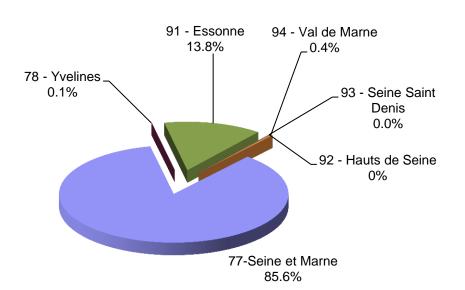
Produits refusés:

Unité	Désignation
300 Kg	Fibro ciment

Camions refusés:

Unité	Désignation	Poids
1	Camions amiante fibro ciment	13 t 35
2	Camions plâtre	35 t 600
1	Camion boues non pelletables	46 t 55
1	Camion de shingle	13 t

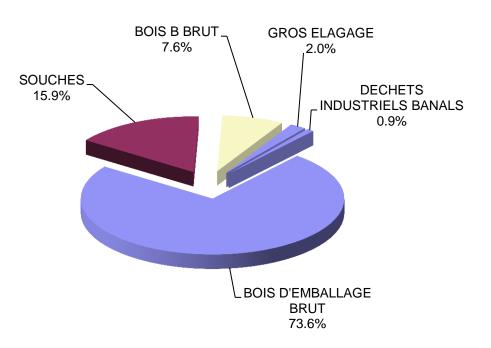
B5: Détection de radioactivité


Le site est équipé d'un système de détection de la radioactivité au niveau du pont-bascule. Le seuil est réglé à 2,5 fois le bruit de fond.

Aucun déclenchement en 2018

B6: Activité valorisation Bois - Répartition géographique des tonnages

Département	Quantité (tonnes)	Part (%)
77-Seine et Marne	3402T	85.6%
78 - Yvelines	2 T	0.1%
91 - Essonne	550T	13.8%
92 - Hauts de Seine	2 T	0.0%
93 - Seine Saint Denis	1T	0.0%
94 - Val de Marne	17T	0.4%
TOTAL	3974T	100.0%


Répartition géographique en 2018

B6: Activité valorisation Bois - Répartition par type de déchets

Désignation	Quantité	%
BOIS D'EMBALLAGE BRUT	2926T	73.6%
SOUCHES	633T	15.9%
BOIS B BRUT	300T	7.6%
GROS ELAGAGE	79T	2.0%
DECHETS INDUSTRIELS		
BANALS	36T	0.9%
Total réceptions :	3974T	100%

Répartition tonnage 2018

B6: Activité valorisation Bois - Evacuation

Total de bois réceptionné sur la valorisation bois : 3 974 tonnes

Bois broyé évacué : 3 728 tonnes

Valorisation: Le bois broyé est utilisé pour la fabrication des panneaux de particules.

Chapitre C

Bilan d'exploitation Biogaz

C1: Analyses sur le biogaz brut (composition)

* : Mesures faites sur l'aspiration ou le refoulement général(e) de l'installation

** : Quantités de biogaz rapportées à 50% de CH4

Date	Pri	ncipales te	neurs des			ogaz*	Quantité mensuelle	Quantité mensuelle
	CH4 (%)	CO2 (%)	O2 (%)	H2S (ppm)	H20 (%H.R.)	H2(ppm)	brûlée (Nm3)**	valorisée (Nm3)**
10/01/2018	39.8	30.4	0.8	1 116	82.7	65	0	333 733
28/02/2018	43.8	33.3	0.1	1 076	80	70	24	308 239
15/03/2018	38.8	28	1.8	951	80.6	88	5 919	305 017
20/04/2018	36.4	27.6	1.5	975	81	67	140	297 660
25/05/2018	34.9	28.8	1.1	715	79.8	46	2 593	299 122
13/06/2018	35.2	29.2	1.1	754	80	44	40	300 755
19/07/2018	40.5	32.5	0.6	2 000	80.2	95	17 981	274 150
27/08/2018	43.8	34.1	1.3	3 774	82.2	190	21 478	224 070
19/09/2018	45	36	0.4	3 883	80.4	168	22 779	236 457
12/10/2018	44.5	33.9	0.5	3 183	79.9	55	26 778	252 539
09/11/2018	45.8	34.3	0.4	2 120	80	264	17 936	298 588
28/12/2018	42.6	33.3	0.6	2 370	82.3	160	58 189	313 464

C2: Analyses rejets de la torchère

Depuis l'arrêté ministériel du 15/02/2016, le contrôle des rejets gazeux de la torchère est réalisé conformément à l'article 21 III.

«Les équipements de destruction du biogaz sont contrôlés par un laboratoire agréé annuellement ou après 4 500 heures de fonctionnement si ces installations fonctionnent moins de 4 500 heures par an.»

La torchère fonctionne uniquement en secours lors de l'arrêt des moteurs. La torchère a fonctionné 981 heures soit moins de 4 500 heures en 2018. Le prochain contrôle aura lieu après 4 500 heures de fonctionnement.

C3: Analyses des rejets gazeux des moteurs

Moteur JENBACHER N°1

23/05/2018- Site de Fouju

Moteur JENBACHER N°2

23/05/2018- Site de Fouju

Paramètres	Unités	Résultat	Seuils
Poussières	mg / Nm3 à 5% O2	14.5	150
NOx	mg / Nm3 à 5% O2	278	525
СО	mg / Nm3 à 5% O2	798	1 200
COV NM	mg / Nm3 à 5% O2	0	50
Vitesse éjection	mètre par seconde m/s	10.6	> 10

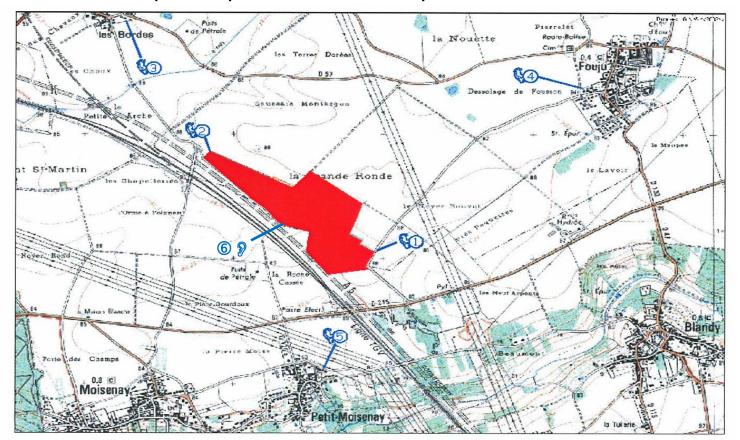
Paramètres	Unités	Résultat	Seuils
Poussières	mg / Nm3 à 5% O2	7.11	150
NOx	mg / Nm3 à 5% O2	376	525
СО	mg / Nm3 à 5% O2	893	1 200
COV NM	mg / Nm3 à 5% O2	0	50
Vitesse éjection	mètre par seconde m/s	12.3	> 10

♥ Résultats conformes aux seuils de l'AP

C4: Bilan valorisation énergétique

Début de la valorisation énergétique en mars 2009, avant le biogaz produit était capté puis brulé en torchère

Type d'Energie	Quantités 2018	Taux de valorisation
Biogaz capté	3 617 652 Nm3	-
Biogaz en torchère	173 857 Nm3	-
Biogaz valorisé	3 443 795 Nm3	95.2 %
Energie livrée à EDF	6.26 GWh	Equivalent à la consommation de l'éclairage d'environ 8 000 habitants


Chapitre D

Bilan bruit

Chapitre D – Bilan bruit

D1: Mesures de bruit

Les mesures ont été réalisées le 19, 20 et 26 décembre 2018 et sont conformes aux prescriptions de l'arrêté préfectoral.

• CSS ISDND Fouju – 09/05/2019

Chapitre D – Bilan bruit

Le site est en fonctionnement du lundi au vendredi de 6h00 à 17h00

♦ En limite de site

	Point 1 En dB(A)	Point 2 En dB(A)	Point 6 En dB(A)
Diurne	54.1	56	58
Rappel des niveaux sonores admissibles selon AP	70	70	70
Nocturne	51.7	51.9	56.7
Rappel des niveaux sonores admissibles selon AP	60	60	60

♦ Zones à émergence réglementée

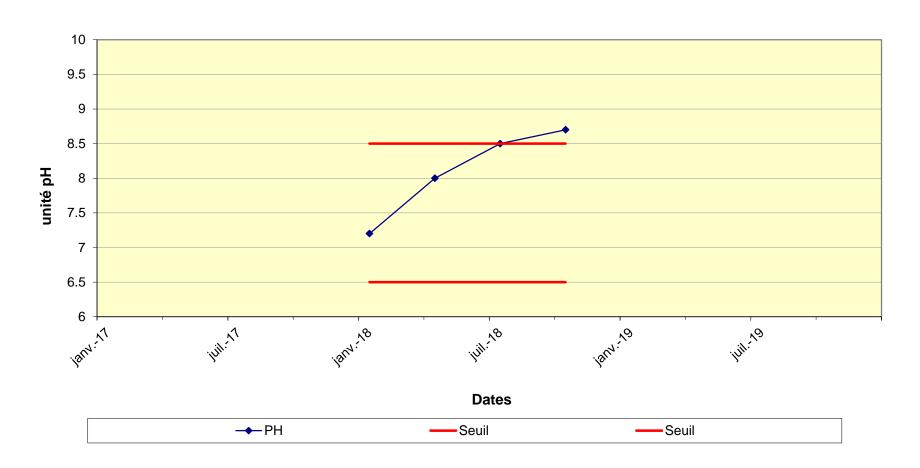
		Point 3 En dB(A) Les Bordes		Point 4 En dB(A) Fouju		Point 5 En dB(A) Le Petit Moisenay	
		LAeq	L50	LAeq	L50	LAeq	L50
Période diurne 7h00- 22h00	Site en fonctionnement	47.7	45.3	44.1	43.3	56.1	44.6
	Site à l'arrêt	46.4	43.6	42	40.4	53.2	43
	Émergence en dB(A)	1.3	/	2.1	/	/	1.6
Période nocturne 22h00- 7h00	Site en fonctionnement	53.9	53.2	48.4	42.2	49.7	37.6
	Site à l'arrêt	51.7	50.9	45.7	42.1	49.5	34.9
	Émergence en dB(A)	2.2	/	2.7	/	/	2.7

♦ Mesures acoustiques conformes aux seuils de l'AP

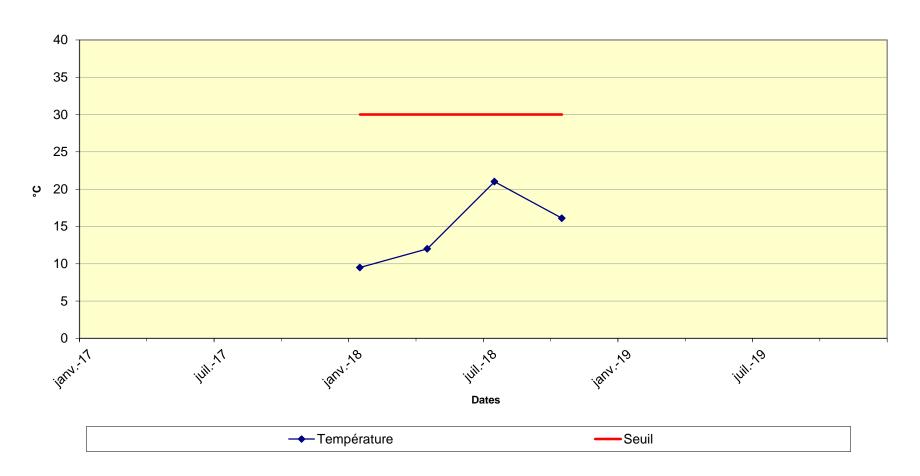
Chapitre E

Bilan des eaux

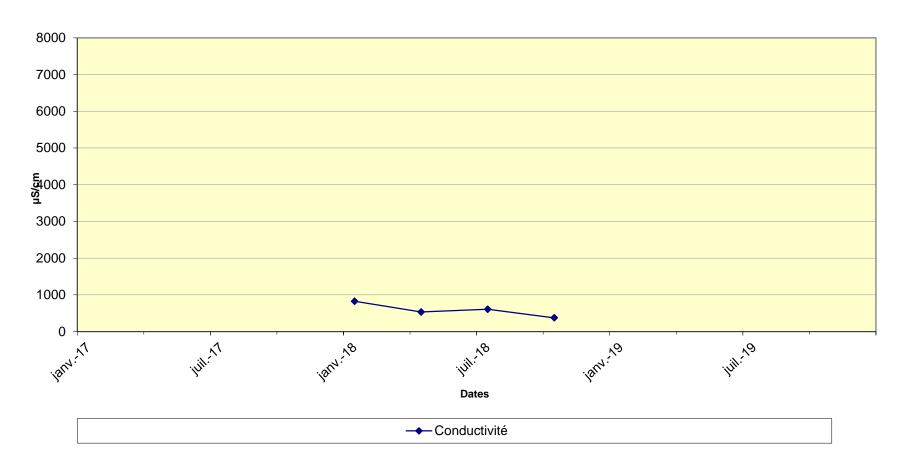
Stockage

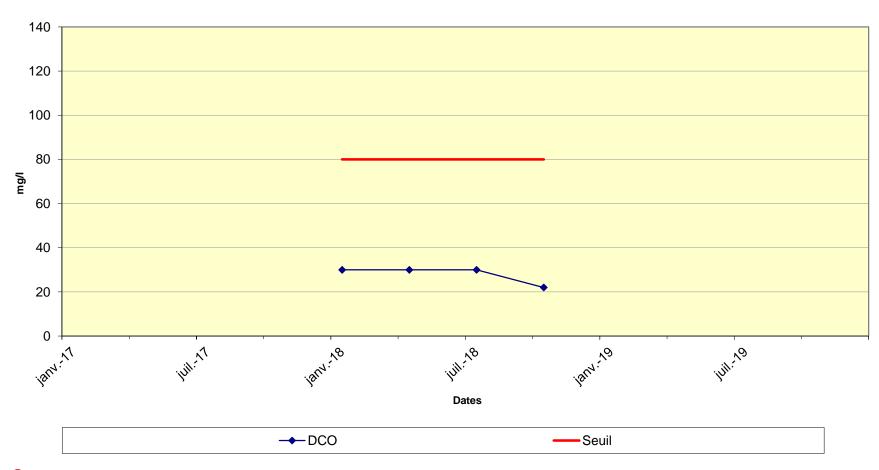

• E1- Eaux de ruissellement

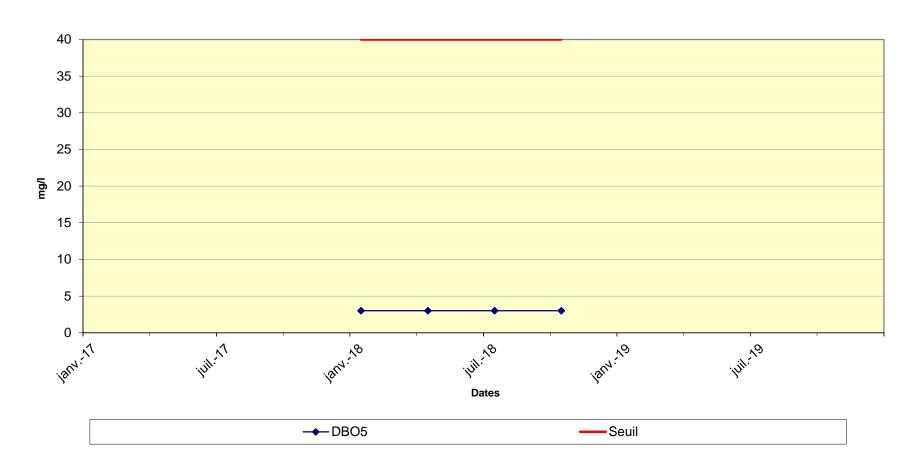
- Les eaux de ruissellement sont collectées via un réseau de fossés périphériques vers le bassin B1 (réserve incendie)
- La fréquence des analyses est trimestrielle
- Les analyses sont réalisées par le laboratoire Eurofins Environnement accrédité COFRAC

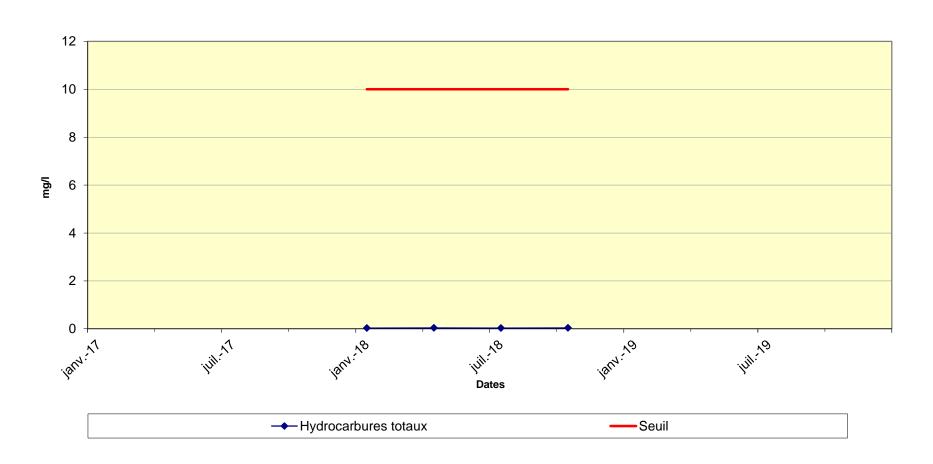

Bassin ER/2018	NTK	Conductivité	DBO5	DCO	нст	MES	рН	Phosphore	Température
Nbre mesures	4	4	4	4	4	4	4	4	4
Moyenne	1.18	584.50	3.00	28.00	0.03	8.13	8.10	0.01	14.65
Mini	1	373	3	22	0.03	2	7.2	0.005	9.5
Maxi	1.5	826	3	30	0.037	15	8.7	0.018	21
Seuil	15	-	40	80	10	30	6.5-8.5	10	30

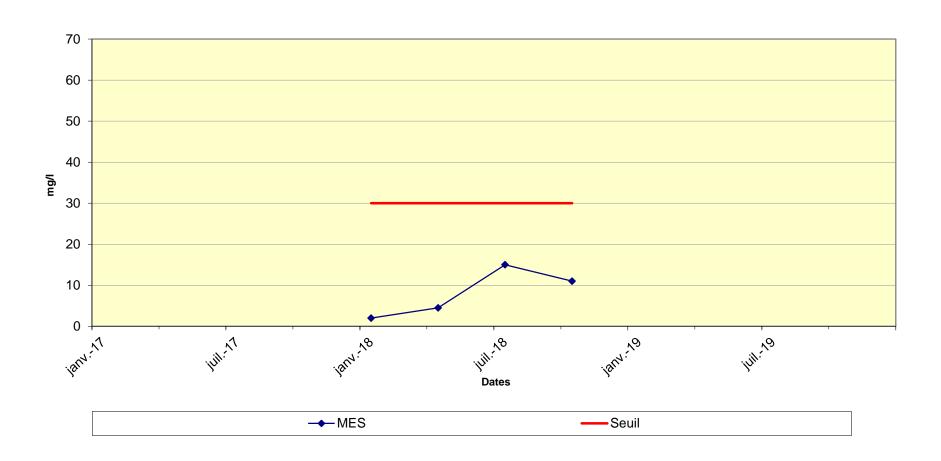
♦ Résultats conformes aux seuils de l'AP sauf pour le pH en octobre 2018

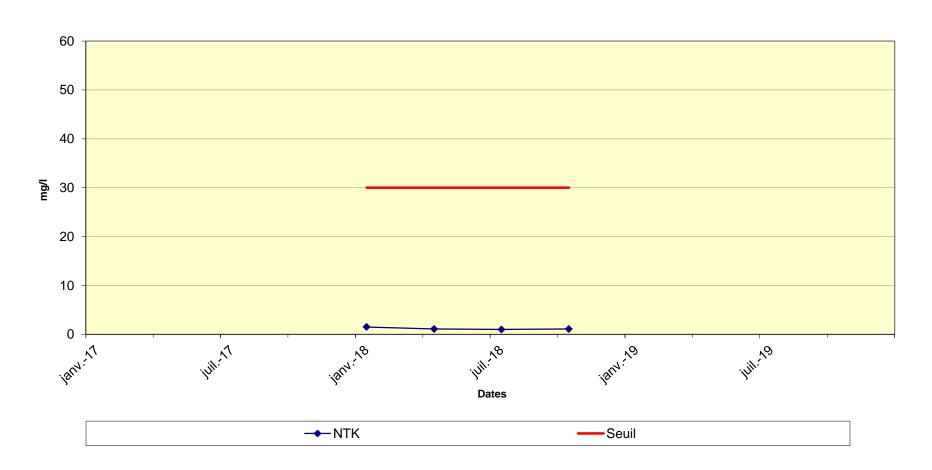

EAUX RUISSELLEMENT FOUJU MOISENAY pH

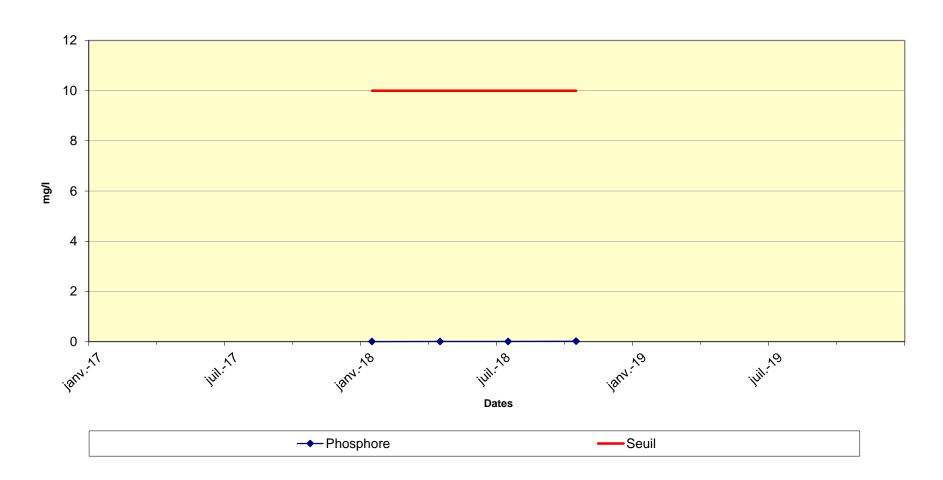

EAUX RUISSELLEMENT FOUJU MOISENAY Température


EAUX RUISSELLEMENT FOUJU MOISENAY Conductivité


EAUX RUISSELLEMENT FOUJU MOISENAY DCO


EAUX RUISSELLEMENT FOUJU MOISENAY DBO5


EAUX RUISSELLEMENT FOUJU MOISENAY Hydrocarbures totaux


EAUX RUISSELLEMENT FOUJU MOISENAY MES

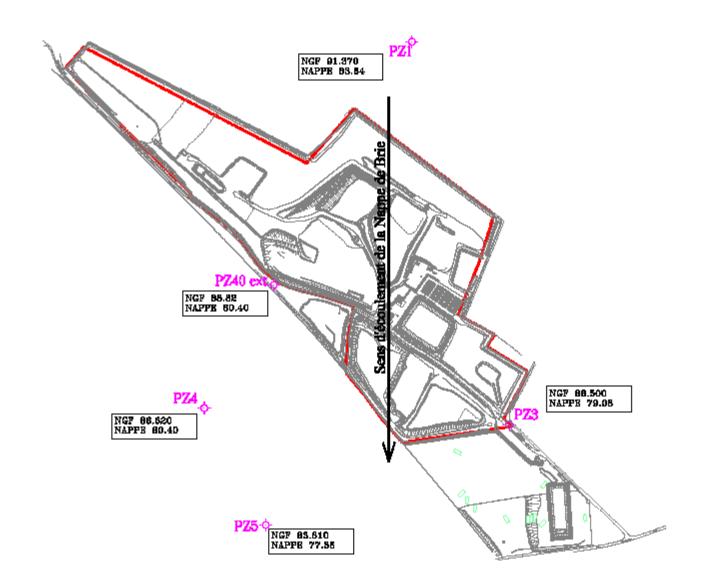
EAUX RUISSELLEMENT FOUJU MOISENAY Azote Kjeldalh

EAUX RUISSELLEMENT FOUJU MOISENAY
Phosphore total

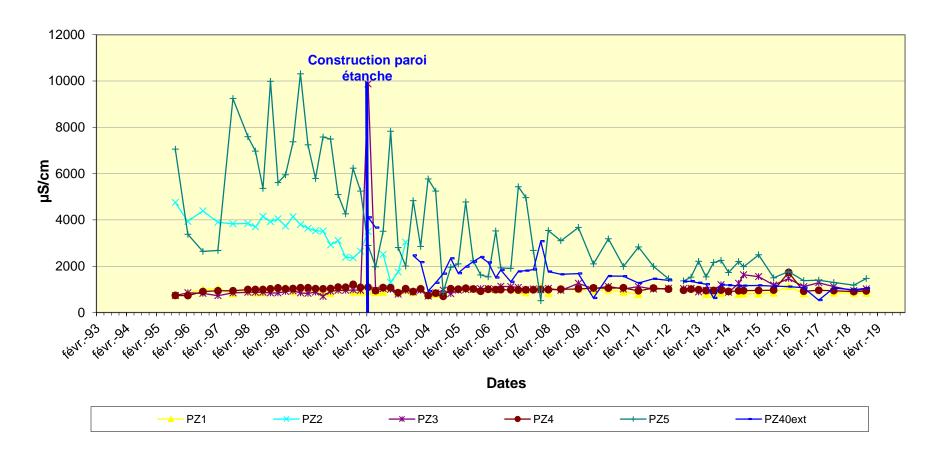
• E2- Eaux souterraines – nappe des calcaires de Brie

Paroi étanche

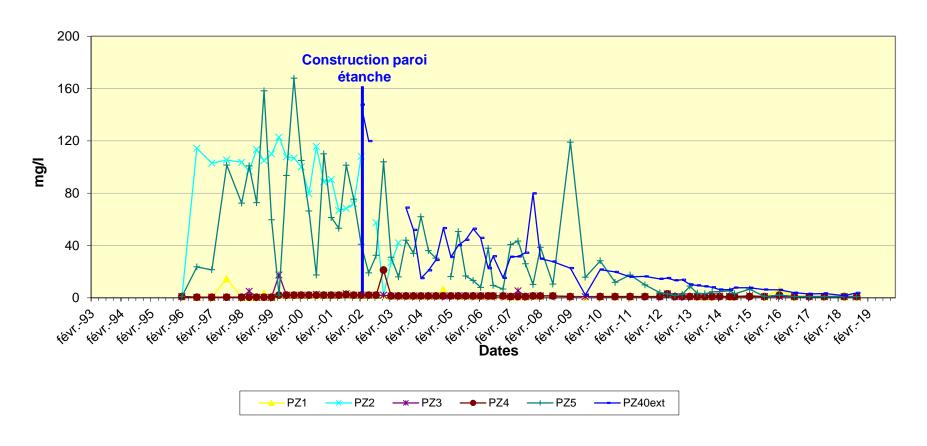
En 2001, une paroi étanche ancrée dans les argiles a été réalisée. Elle permet depuis d'isoler hydrauliquement le site afin de protéger les nappes d'eaux souterraines.

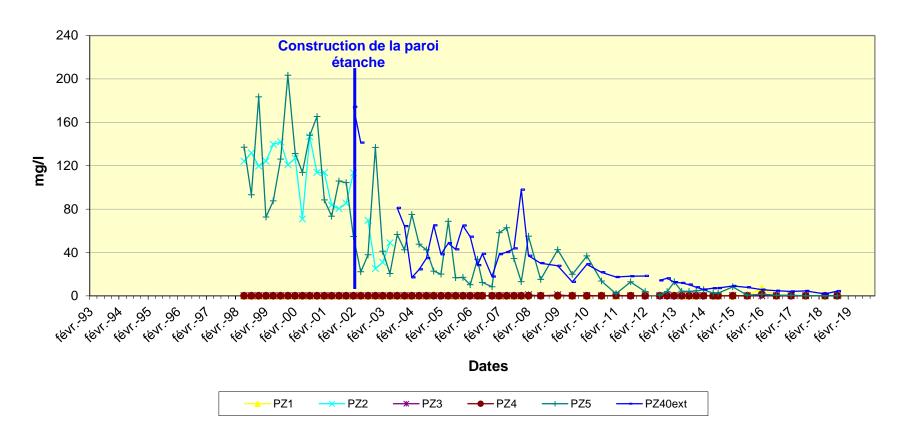

Des vérifications périodiques de l'étanchéité de la paroi sont réalisées. Ces contrôles portent sur les mesures de niveaux statiques et la qualité des eaux de chaque coté de la paroi.

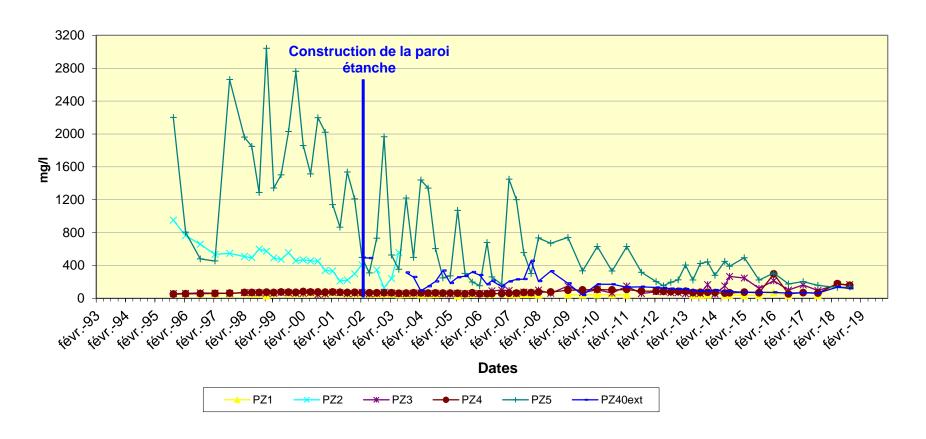
Pour respecter l'écoulement naturel de la nappe des calcaires de Brie, un drain périphérique a été mis en place. Ce drain comporte un réseau de 28 regards de visites qui permettent de vérifier le bon écoulement de la nappe.

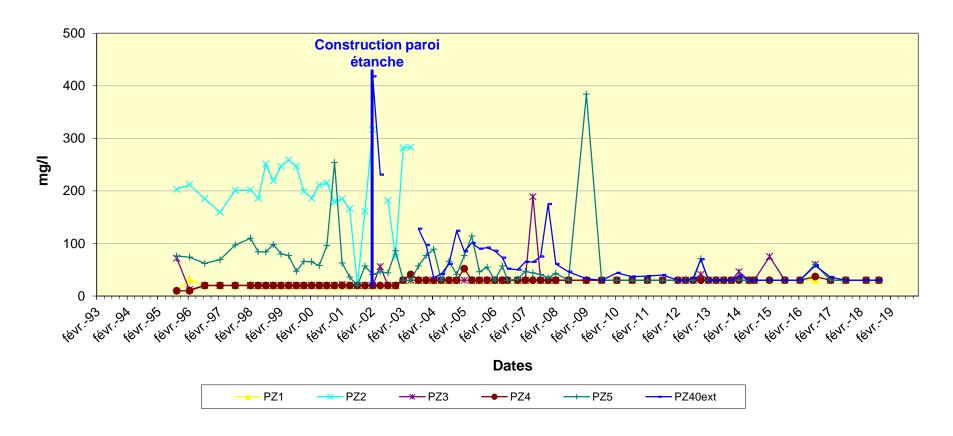

Nappe du calcaire de brie

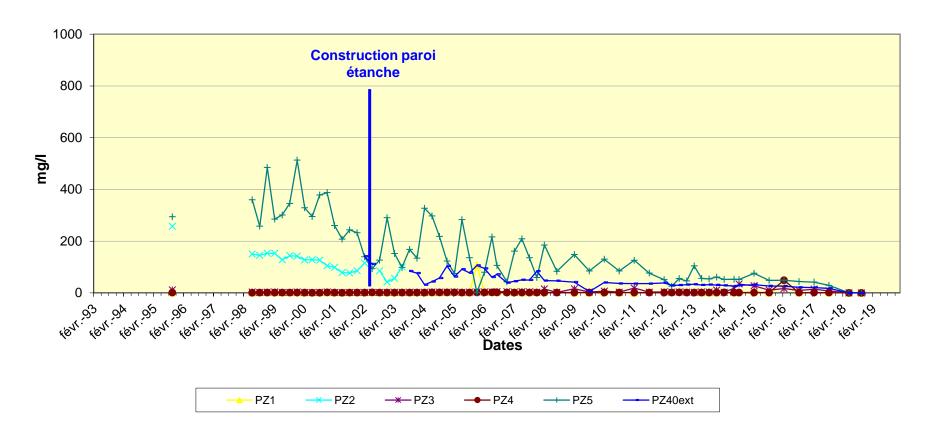
Suivi piézométrique conformément à l'arrêté préfectoral par 5 piézomètres. Le PZ 2, situé à l'intérieur de la paroi étanche, était suivi jusqu'à la réalisation de celle-ci. Ce piézomètre a ensuite été remplacé par le PZ40ext2. Les prélèvements sont réalisés par Burgéap et les analyses par le laboratoire Eurofins Environnement certifié COFRAC. Le contrôle de la qualité de la nappe des calcaires de Brie est réalisé semestriellement.

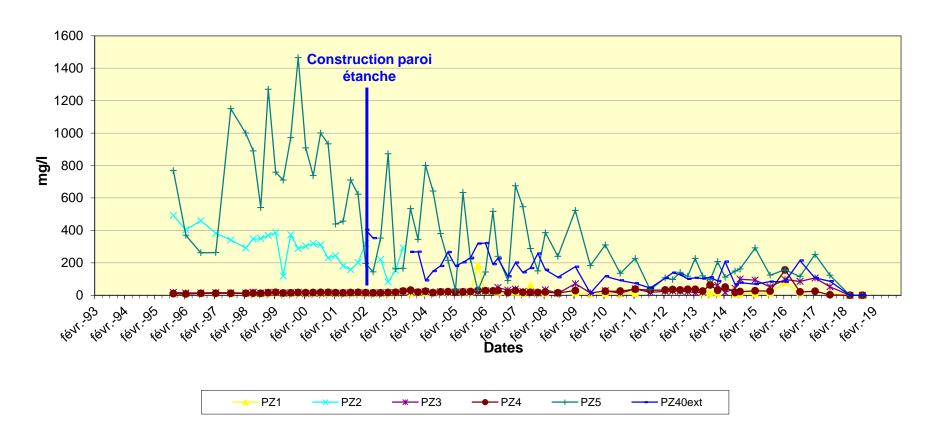

☼ Depuis la construction de la paroi, on constate une diminution significative des concentrations en polluants dans les pièzomètres situés à l'aval du site (Pz₄₀ext et Pz5). Il n'y a plus d'impact du site sur la nappe des calcaires de Brie


EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Conductivité


EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Azote Kjeldahl

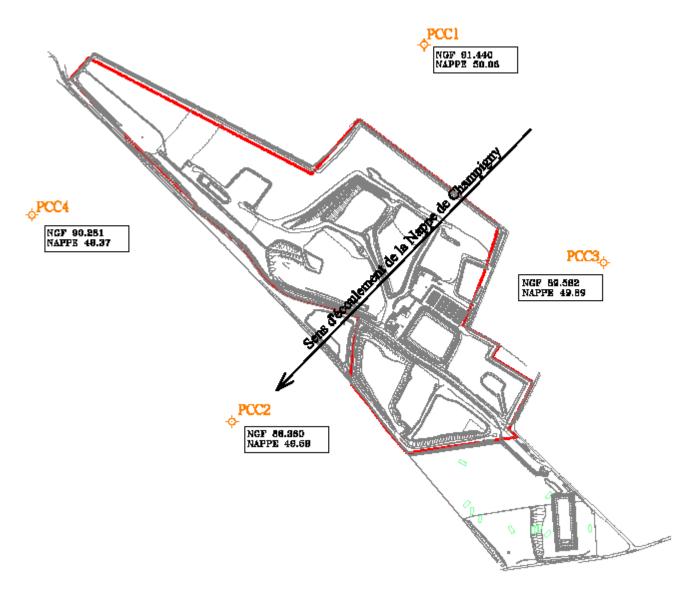

EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Ammonium


EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Chlorures

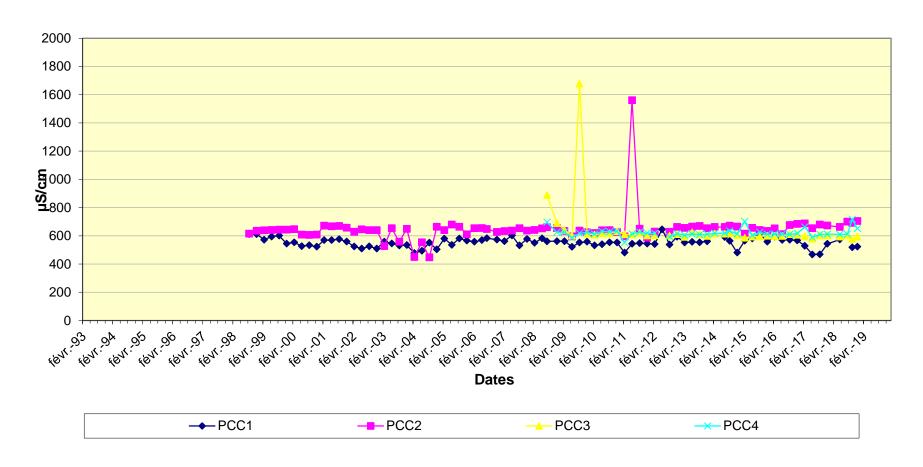

EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie DCO

EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Potassium

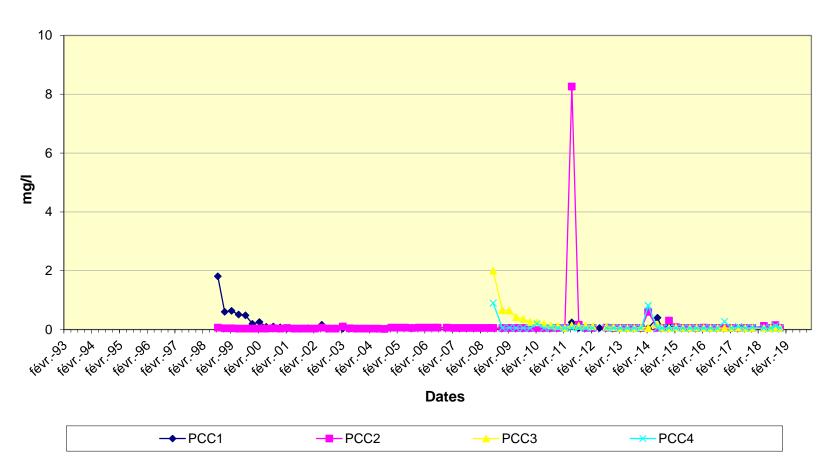
EAUX SOUTERRAINES Fouju Nappe des calcaires de Brie Sodium

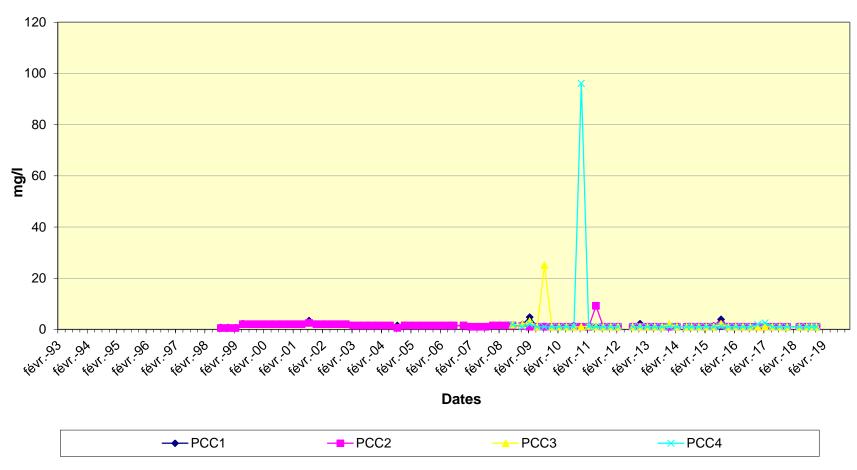

- E2- Eaux souterraines nappe des calcaires de Champigny
- Nappe du calcaire de champigny

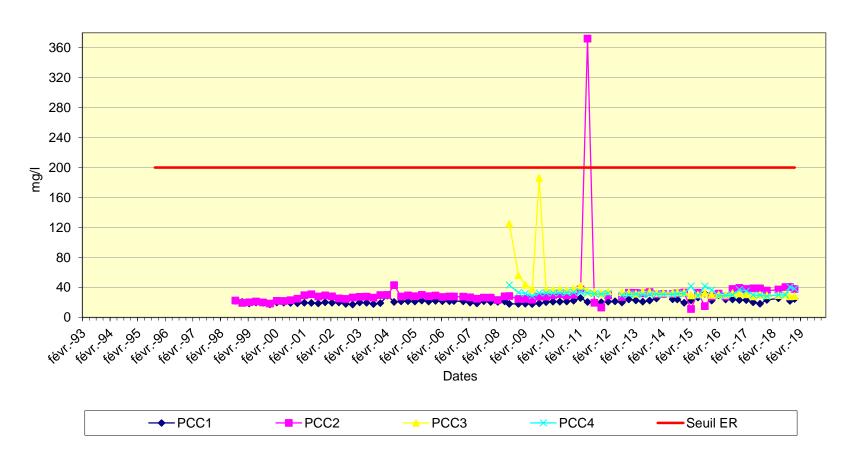
Les piézomètres PCC1 et PCC2 ont été créés en 1998 et les piézomètres PCC3 et PCC4 ont été crées en 2008.

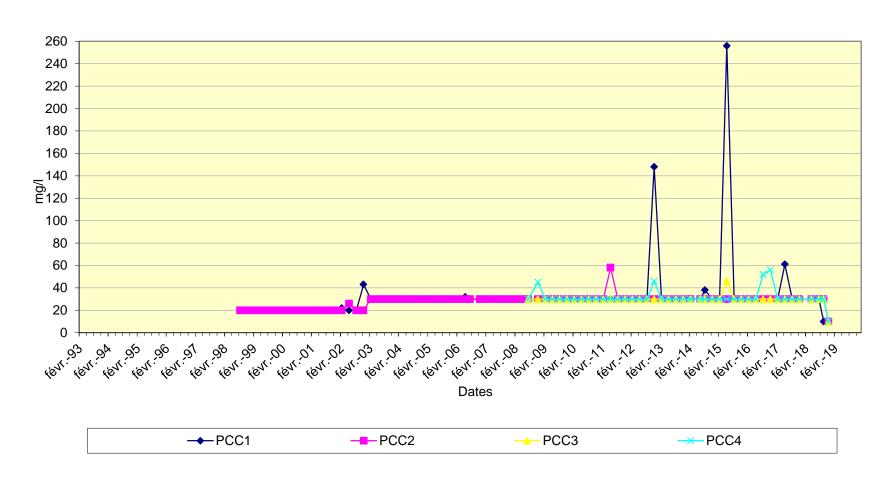

Le suivi analytique était semestriel jusqu'en 2007 puis trimestriel

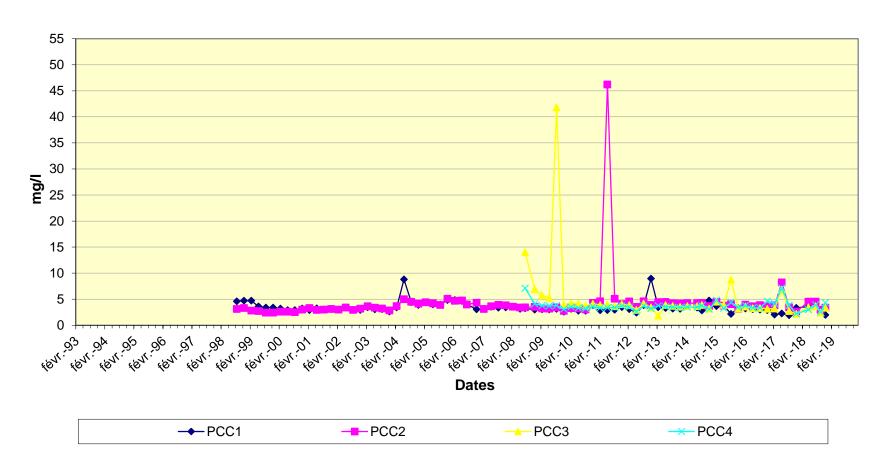
Les prélèvements sont réalisés par Burgéap et les analyses par le laboratoire Eurofins Environnement certifié COFRAC

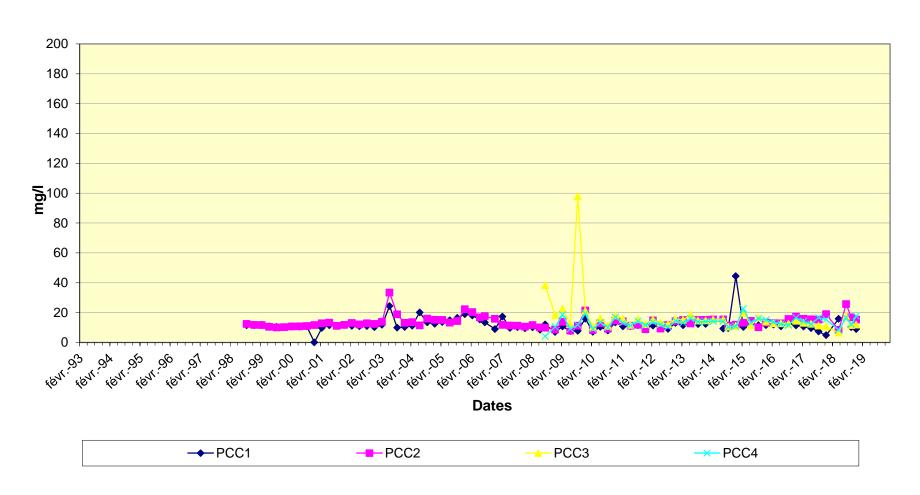

Pas d'impact de l'activité sur la qualité des eaux de la nappe des calcaires de Champigny


EAUX SOUTERRAINES Fouju Conductivité


EAUX SOUTERRAINES Fouju Ammonium


EAUX SOUTERRAINES Fouju Azote Kjeldahl


EAUX SOUTERRAINES Fouju Chlorures


EAUX SOUTERRAINES Fouju DCO

EAUX SOUTERRAINES Fouju Potassium

EAUX SOUTERRAINES Fouju Sodium

Chapitre E Eaux souterraines - Nappes des calcaires de Brie et calcaires de Champigny

E2- Eaux souterraines - Radioactivité

Conformément à l'arrêté Ministériel du 15 février 2016, des analyses de la radioactivité ont été réalisées sur les eaux de la nappe des calcaires de Brie et les eaux de la nappe des calcaires de Champigny

Les prélèvements ont été réalisés par Burgéap en novembre 2017 et les analyses par le laboratoire Eichrom qui est agréé pour les mesures de la radioactivité de l'environnement conformément aux exigences réglementaires de l'arrêté du 15 février 2016, et aux articles R1333-11 et R1333-11-1 du code de la santé publique.

- Toutes les valeurs des analyses sont inférieures ou proches de la limite de détection
- Prochaines mesures prévues en 2022

Chapitre E – Bilan des Lixiviats

• E3- Analyses des lixiviats

Lixiviats pompés en fond de casier avant traitement

Les analyses sont réalisées par le laboratoire Eurofins Environnement certifié COFRAC

Date	29/01/2018	27/04/2018	13/07/2018	08/10/2018		
Aluminium (mg/l)	0.83	0.11	< 0.1	0.2		
Ammonium (mg/l)	200	170	150	500		
AOX (mg/l)	0.35	0.43	0.79	0.52		
Arsenic (mg/l)	0.13	0.03	< 0.02	< 0.02		
Azote kjeldahl (mg/l)	202	171	160	459		
Cadmium (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01		
Chlorures (mg/l)	795	1980	2540	1150		
Chrome (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01		
ChromeVI (mg/l)	< 0.1	0.02	< 0.01	0.05		
Conductivité (µS/cm)	5160	8200	9190	8500		
COT (mg/l)	79	81	65	130		
Cuivre (mg/l)	0.07	< 0.02	< 0.22	< 0.02		
Cyanures Libres	< 0.01	< 0.01	< 0.01	< 0.01		
DBO5 (mg/l)	9	50	16	13		
DCO (mg/l)	339	281	242	480		
EOX (mg/l)	0.0021	0.0019	0.0015	0.016		
Etain (mg/l)	< 0.05	< 0.05	< 0.05	< 0.05		
Fer (mg/l)	112	25.2	7.42	15.5		
Fluorure (mg/l)	0.56	0.65	0.75	< 0.5		
Hydrocarbures (mg/l)	< 0.5	< 0.5	< 0.5	< 0.5		
Manganèse (mg/l)	0.49	0.31	0.53	< 0.2		
Mercure (mg/l)	< 0.0005	< 0.0005	< 0.0005	< 0.0005		
MES (mg/l)	580	150	11	70		
NGL (mg/l)	202.3	172	160	459.6		
Nickel (mg/l)	0.03	0.04	0.03	0.05		
PH (unité pH)	7.2	7.2	6.9	7.1		
phénols (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01		
Phosphore Total (mg/l)	15.6	4.02	0.97	3.09		
Plomb (mg/l)	0.02	< 0.01	< 0.01	< 0.01		
Résistivité (Ohm.cm)	194	122	109	118		
Sulfates (mg/l)	162	164	101	5		
Zinc (mg/l)	0.21	< 0.02	0.13	0.05		

Chapitre E – Bilan des Lixiviats

 E4- Analyses des lixiviats eaux de la bassine

Lixiviats contenus à l'intérieur de la paroi étanche d'isolation hydraulique

Les analyses sont réalisées par le laboratoire Eurofins Environnement certifié COFRAC

			1		
Eaux de la bassine	29/01/2018	27/04/2018	13/07/2018	08/10/2018	
Aluminium (mg/l)	< 0.1	< 0.1	< 0.1	< 0.1	
Ammonium (mg/l)	120	110	120	150	
AOX (mg/l)	0.27	0.47	0.36	0.48	
Arsenic (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	
Azote kjeldahl (mg/l)	135	124	129	174	
Cadmium (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	
Chlorures (mg/l)	2560	2690	3060	3290	
Chrome (mg/l)	0.02	< 0.01	< 0.01	0.02	
ChromeVI (mg/l)	< 0.01	< 0.01	< 0.01	0.02	
Conductivité (µS/cm)	8990	9280	10200	11200	
COT (mg/l)	75	66	70	93	
Cuivre (mg/l)	< 0.02	< 0.02	< 0.02	< 0.02	
Cyanures Libres	< 0.01	< 0.01	< 0.01	< 0.01	
DBO5 (mg/l)	6	35	22	44	
DCO (mg/l)	265	308	277	540	
EOX (mg/l)	0.0012	0.0011	0.0014	0.0012	
Etain (mg/l)	< 0.05	< 0.05	< 0.05	< 0.05	
Fer (mg/l)	1.42	0.8	1.07	0.55	
Fluorure (mg/l)	0.94	0.83	0.85	0.98	
Hydrocarbures (mg/l)	< 0.5	< 0.5	< 0.5	< 0.5	
Manganèse (mg/l)	0.24	0.11	0.07	0.11	
Mercure (mg/l)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
MES (mg/l)	38	92	85	54	
NGL (mg/l)	136	124.2	129.3	174.5	
Nickel (mg/l)	0.04	0.03	0.03	0.03	
PH (unité pH)	8	7.9	7.8	7.8	
phénols (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	
Phosphore Total (mg/l)	1.05	0.26	0.2	0.81	
Plomb (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	
Résistivité (Ohm.cm)	111	108	97.6	89.4	
Sulfates (mg/l)	197	186	225	184	
Zinc (mg/l)	< 0.02	< 0.02	< 0.02	< 0.02	

Chapitre E – Traitement des Lixiviats

• E5- Bilan du traitement des lixiviats

2018	Effluent évacué vers SITREM	Effluent t	raité sur site	Total	Perméat produit	Perméat év	Nombre de		
	Concentrat	Casier nouvelle génération	Eaux faiblement polluées dans la paroi étanche		produit	Réserve incendie	Milieu naturel	bâchées	
Total	4 150.5 m3	6 253 m3	20 751 m3	27 004 m3	22 442 m3	22 442 m3	0 m3	14	

OCSS ISDND Fouju - 09/05/2019

Chapitre E – Traitement des Lixiviats

• E5- Bilan du traitement des lixiviats – analyses des rejets dans le milieu naturel

Perméat en mg/l	Valeurs limites	10/01/18	01/02/18	02/03/18	15/03/18	10/04/18	27/04/18	17/05/18	18/06/18	12/07/18	03/08/18	03/09/18	28/09/18	23/10/18	20/11/18
Aluminium	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
AOX	8.0	0.06	0.05	0.07	0.05	0.01	0.08	0.05	0.09	0.06	0.07	0.05	0.14	0.05	0.05
Arsenic	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azote kjeldahl	15	3	3	3	3.1	3	3	3	3.3	4.1	3.9	3.6	4.1	3.9	3
Cadmium	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrome	0.4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ChromeVI	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
СОТ	50	9.4	0.7	0.5	0.5	0.7	1.5	0.9	1.5	2.2	1.8	1.4	0.7	1.1	1.7
Couleur	100	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	7.5	< 2.5	< 2.5	< 2.5
Cuivre	0.4	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cyanures Libres	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.038	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
DBO5	30	< 3	< 3	< 3	< 3	< 3	5	< 3	< 3	5	5	4	7	< 3	< 3
DCO	80	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	16	70	18	18	< 10	< 10
Etain	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fer	1	< 0.02	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03	< 0.04	< 0.13	< 0.08	< 0.04	< 0.07	< 0.04	< 0.04
Fluorure	5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Hydrocarbures	2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Manganèse	8.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mercure	0.04	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MES	30	< 2	< 2	< 2	< 2	2.4	2.7	< 2	< 2	7.7	12	7.1	4.2	7.4	2.3
Nickel	0.4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PH	5.5 - 8.5	6	6.3	7.2	6.4	7.1	7	6.4	6.5	6.4	6.2	6	6.6	6	6.5
phénols	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.031	< 0.01	< 0.01	< 0.01	< 0.01
Phosphore Total	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.03
Plomb	0.4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Chapitre E – Emissions diffuses

• E6: Emissions diffuses

- Emissions diffuses = émissions de biogaz qui s'échappent au niveau de la surface des casiers
- •Sur l'ISDND de Fouju, la cartographie des émissions diffuses de méthane a été réalisée du 20 au 24 août 2018 par le BE Laurent Riquier. Les mesures ont été réalisées avec un détecteur à ionisation de flamme relié à un GPS pour situer chaque point de mesure.

Chapitre E – Emissions diffuses

→ Près 97 % des mesures sont inférieures à 20 ppm (limite de quantification de la méthode).

Le réseau de captage est donc bien dimensionné et les couvertures efficaces pour limiter les émissions diffuses.

○ CSS ISDND Fouju – 09/05/2019 61

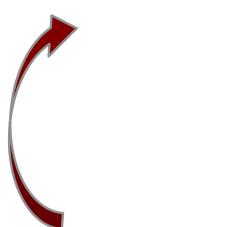
Chapitre F

Travaux et perspectives

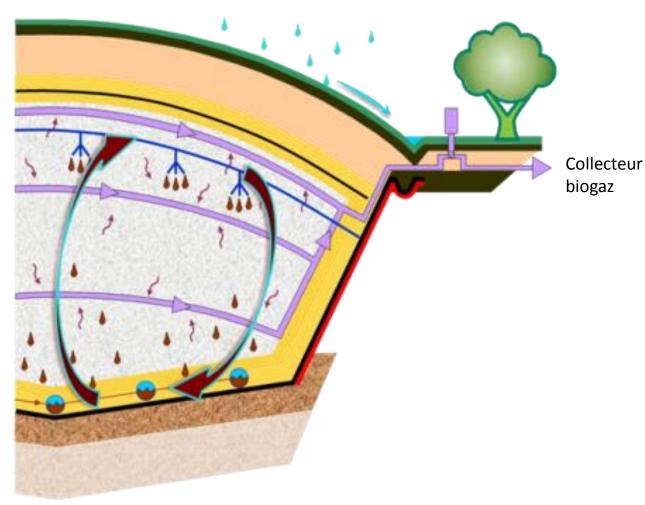
Chapitre F – Travaux et perspectives

- Stockage en cours dans le casier 5 A1
- Réaménagement des casiers terminés au fur et à mesure de l'exploitation.
- Aménagement du casier 5A en mode bioréacteur

Chapitre F - Casier mode bioréacteur


Confinement maximum du casier

- L'étanchéité à l'eau et au gaz est maximisée en couverture du casier de stockage avec un film géosynthétique
- L'optimisation de la fermentation par le suivi des paramètres, notamment l'humidité et la température.
- Le maintien de l'humidité dans le massif de déchets est réalisé par la mise en place d'un système de recirculation des lixiviats.
- Amélioration du captage du biogaz avec un raccordement du casier au réseau de dégazage avant son exploitation
- Exploitation en 24 mois pour confiner au plus vite le casier et limiter les émissions diffuses


Chapitre F – Casier mode bioréacteur

Membrane étanche

Tuyaux de réinjection

Tuyau de collecte des lixiviats

